Math 303: Section 18
\[ \def\R{{\mathbb R}} \def\b{{\mathbf{b}}} \def\x{{\mathbf{x}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \DeclareMathOperator{\null}{Nul} \]
Computing powers of a matrix is often desirable.
Let \(D = \left[\begin{matrix} 2 & 0 \\ 0 & 3 \end{matrix}\right]\).
Explain in general why
\[ D^n = \left[\begin{matrix} 2^n & 0 \\ 0 & 3^n \end{matrix}\right]. \]
This will be true in general!
Let \(D\) be any matrix, \(P\) an invertible matrix, and \(A = P^{-1} D P\).
Definition 1 The \(n\times n\) matrix \(A\) is similar to the \(n\times n\) matrix \(B\) if there is an invertible matrix \(P\) such that \(A = P^{-1} B P\).
Let \(A= \left[\begin{matrix} 1 & 1 \\ 2 & 0 \end{matrix}\right]\) and \(B = \left[\begin{matrix} 2 & 2 \\ 0 & -1 \end{matrix}\right]\).
sage
).Let \(A\) and \(B\) be similar matrices with \(A = P^{-1} B P\).
\[ \det (A - \lambda I) = \det(B -\lambda I). \]
Theorem 1 (Properties of Similar Matrices) Let \(A\) and \(B\) be similar \(n\times n\) matrices and \(I\) the \(n\times n\) identity matrix. Then:
A matrix transformation via an \(m\times n\) matrix \(A\) takes \(\R^n\) to \(\R^m\) via left multiplication.
Another use of similar matrices is to rewrite a given matrix transformation (with respect to the standard basis) using a “nicer” matrix.
Let \(A = \left[\begin{matrix} 7 & 2 \\ -4 & 1 \end{matrix}\right]\) define a transformation \(T: \R^2 \to \R^2\). We can verify that the eigenvalues of \(A\) are \(5\) and \(3\), corresponding to eigenvectors \(\v_1 = \left[\begin{matrix} 1 \\ -1 \end{matrix}\right]\) and \(\v_2 = \left[\begin{matrix} 1 \\ -2 \end{matrix}\right]\). If we let \(P = [ \v_1 \ \v_2]\) and \(D = \left[\begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]\), then
\[ A = P D P^{-1}. \]
Definition 2 Let \(A\) be \(n\times n\). We say \(A\) is diagonalizable if there is an invertible \(n\times n\) matrix \(P\) such that \(P^{-1} A P\) is a diagonal matrix.
Find, if possible, an invertible matrix \(P\) that diagonalizes \(A\), and write \(A = P D P^{-1}\).