Math 303: Section 26
\[ \def\R{{\mathbb R}} \def\P{{\mathbb P}} \def\B{{\mathcal B}} \def\C{{\mathcal C}} \def\S{{\mathcal S}} \def\b{{\mathbf{b}}} \def\c{{\mathbf{c}}} \def\x{{\mathbf{x}}} \def\y{{\mathbf{y}}} \def\u{{\mathbf{u}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \def\z{{\mathbf{z}}} \def\M{{\mathcal{M}}} \DeclareMathOperator{\null}{Nul} \DeclareMathOperator{\span}{Span} \DeclareMathOperator{\dim}{dim} \newcommand{\set}[1]{\left\{ {#1} \right\}} \newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}} \]
Takeaway: We can change bases1 via coordinate vectors!
Let \(\B = \set{\b_1, \b_2, \ldots, \b_n}\) and \(\C = \set{\c_1, \c_2, \ldots, \c_n}\) be two bases for a vector space \(V\). If \(\x\) is in \(V\), we can write
\[ \x = x_1 \b_1 + x_2 \b_2 + \cdots + x_n \b_n. \]
Then
\[ [\x]_\B = \left[\begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix}\right]. \]
Observe
\[ \begin{align*} [\x]_\C &= [x_1 \b_1 + x_2 \b_2 + \cdots + x_n \b_n]_\C \\ &= x_1 [\b_1]_\C + x_2 [\b_2]_\C + \cdots + x_n [\b_n]_\C\\ &= \left[ [\b_1]_\C \ [\b_2]_\C \ \cdots \ [\b_n]_\C \right] \left[\begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix}\right]\\ &= \left[ [\b_1]_\C \ [\b_2]_\C \ \cdots \ [\b_n]_\C \right] [\x]_\B \end{align*} \]
Definition 1 Let \(\B = \set{\b_1, \b_2, \ldots, \b_n}\) and \(\C = \set{\c_1, \c_2, \ldots, \c_n}\) be two bases for a vector space \(V\). The change of basis matrix from \(\B\) to \(\C\) is the matrix
\[ \mathop{P}_{\C\leftarrow \B} = \left[ [\b_1]_\C \ [\b_2]_\C \ \cdots \ [\b_n]_\C \right]. \]
Theorem 1 Let \(\B = \set{\b_1, \b_2, \ldots, \b_n}\) and \(\C = \set{\c_1, \c_2, \ldots, \c_n}\) be two bases for a vector space \(V\). Then
\[ [\x]_\C = \mathop{P}_{\C\leftarrow \B} [\x]_\B \]
for any vector \(\x\) in \(V\).
Let \(b_1(t) = 4 + t\), \(b_2(t) = 2 + 5t\), \(c_1(t) = -1 + 2t\), \(c_2(t) = -1 - t\). The sets \(\B = \set{b_1(t), b_2(t)}\) and \(\C = \set{c_1(t), c_2(t)}\) are bases for \(\P_1\). Our goal is to find the change of basis matrix \(\mathop{P}_{\C\leftarrow \B}\) from \(\B\) to \(\C\). We will use the coordinate transformation with respect to the standard basis \(\mathcal{S} = \set{1,t}\) for \(\P_1\) to transfer our work into \(\R^2\).
The sets \(\B = \set{3, 4-t}\) and \(\C = \set{1+2t, -1 + t}\) are bases for \(\P_1\).
Theorem 2 Let \(V\) be a finite dimensional vector space, and let \(\B, \C\), and \(\S\) be bases for \(V\).