Math 303: Section 27
\[ \def\R{{\mathbb R}} \def\P{{\mathbb P}} \def\B{{\mathcal B}} \def\C{{\mathcal C}} \def\S{{\mathcal S}} \def\b{{\mathbf{b}}} \def\c{{\mathbf{c}}} \def\x{{\mathbf{x}}} \def\y{{\mathbf{y}}} \def\u{{\mathbf{u}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \def\z{{\mathbf{z}}} \def\e{{\mathbf{e}}} \def\r{{\mathbf{r}}} \def\M{{\mathcal{M}}} \DeclareMathOperator{\null}{Nul} \DeclareMathOperator{\span}{Span} \DeclareMathOperator{\dim}{dim} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\row}{Row} \DeclareMathOperator{\col}{Col} \newcommand{\set}[1]{\left\{ {#1} \right\}} \newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}} \newcommand{\norm}[1]{{\left|\! \left| #1 \right| \! \right|}} \]
The length/magnitude/norm of the vector \(\v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) in \(\R^2\) is
\[ \norm{\v} = \sqrt{v_1^2 + v_2^2}. \]
The dot product of vectors \(\u = [ u_1 \ u_2 \ \cdots \ u_n]^\textsf{T}\) and \(\v = [ v_1 \ v_2 \ \cdots \ v_n]^\textsf{T}\) in \(\R^n\) is
\[ \u\cdot \v = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n. \]
The norm \(\norm{\v}\) of \(\v\in\R^n\) is
\[ \norm{\v} = \sqrt{\v\cdot\v}. \]
Alternatively, \(\u\cdot\v = \u^\textsf{T}\v\).
Theorem 1 Let \(\u,\v,\w\) be vectors in \(\R^n\) and let \(c\) be a scalar. Then
Definition 1 Let \(\u,\v\in\R^n\). The distance between \(\u\) and \(\v\) is the length of the difference \(\u - \v\), or
\[ \norm{\u - \v}. \]
Thus,
\[ \cos\theta = \frac{\u\cdot\v}{\norm{\u} \norm{\v}}. \]
Since the orthogonal project \(\proj_\v \u\) is in the direction of \(\v\), there is a constant \(c\) such that \(\proj_\v \u = c\v\). So let’s solve for \(c\).
Let \(\u, \v\) be vectors in \(\R^n\) with \(\v\ne \mathbf{0}\).
The orthogonal projection of \(\u\) onto \(\v\) is the vector
\[ \proj_\v \u = \frac{\u\cdot\v}{\norm{\v}^2} \v. \]
The projection of \(\u\) orthogonal to \(\v\) is the vector
\[ \proj_{\perp \v} \u = \u - \proj_\v \u. \]
Let \(\u = \left[\begin{matrix} 5 \\ 8 \end{matrix}\right]\) and \(\v = \left[\begin{matrix} 6 \\ - 10 \end{matrix}\right]\). Find \(\proj_\v \u\) and \(\proj_{\perp \v} \u\) and draw a picture to illustrate.
Let \(W\) be a subspace of \(\R^n\) for some \(n\ge 1\). The orthogonal complement of \(W\) is the set
\[ W^\perp = \setof{\x \in \R^n}{\x \cdot \w = 0 \text{ for all } \w\in W}. \]
Let \(W = \span\set{[1 \ -1]^\textsf{T}}\) in \(\R^2\). Completely describe all vectors in \(W^\perp\) both algebraically and geometrically.
We have seen another example of orthogonal complements. Let \(A\) be an \(m\times n\) matrix with rows \(\r_1, \r_2, \ldots, \r_m\) in order. Consider the three spaces \(\null A\), \(\row A\), and \(\col A\) related to \(A\), where \(\row A = \span\set{\r_1, \r_2, \ldots, \r_m}\). Let \(\x\) be a vector in \(\row A\).
Let \(A\) be \(m\times n\). Then
\[ (\row A)^\perp = \null A \text{ and } (\col A)^\perp = \null A^\textsf{T}. \]
Theorem 2 Let \(\mathcal{B} = \set{\w_1, \w_2, \ldots, \w_m}\) be a basis for a subspace \(W\) of \(\R^n\). A vector \(\v\) in \(\R^n\) is orthogonal to every vector in \(W\) if and only if \(\v\) is orthogonal to every vector in \(\mathcal{B}\).
Let \(W = \span \set{\left[\begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right], \left[\begin{matrix} 0 \\ 0 \\ 1 \end{matrix}\right]}\). Find all vectors in \(W^\perp\).