Math 303: Section 30
\[ \def\R{{\mathbb R}} \def\P{{\mathbb P}} \def\B{{\mathcal B}} \def\C{{\mathcal C}} \def\S{{\mathcal S}} \def\b{{\mathbf{b}}} \def\a{{\mathbf{a}}} \def\c{{\mathbf{c}}} \def\x{{\mathbf{x}}} \def\y{{\mathbf{y}}} \def\u{{\mathbf{u}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \def\z{{\mathbf{z}}} \def\e{{\mathbf{e}}} \def\r{{\mathbf{r}}} \def\M{{\mathcal{M}}} \DeclareMathOperator{\null}{Nul} \DeclareMathOperator{\span}{Span} \DeclareMathOperator{\dim}{dim} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\row}{Row} \DeclareMathOperator{\col}{Col} \DeclareMathOperator{\trace}{trace} \newcommand{\set}[1]{\left\{ {#1} \right\}} \newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}} \newcommand{\norm}[1]{{\left|\! \left| #1 \right| \! \right|}} \newcommand{\ip}[1]{{\left\langle #1 \right\rangle}} \]
Let \(\set{\v_1, \v_2, \ldots, \v_m}\) be a basis for a subspace \(W\) of an inner product space \(V\). The set \(\set{\w_1, \w_2, \ldots, \w_m}\) defined by:
is an orthogonal basis for \(W\). Moreover, for each \(k\) satisfying \(1\le k \le m\),
\[ \span \set{\w_1, \w_2, \ldots, \w_k} = \span \set{\v_1, \v_2, \ldots, \v_k}. \]
Use the Gram-Schmidt process to find an orthogonal basis for each space \(W\) below.
Let \(A = \left[\begin{matrix} 1 & 0 \\ 0 & 0 \\ 0 & 2 \end{matrix}\right]\).
Let \(A = [\a_1 \ \a_2 \ \a_3 \ \cdot \ \a_n]\) be \(m\times n\) with rank \(n\).
\[ A = [Q \r_1 \ Q \r_2 \ \cdots \ Q \r_n] = Q R, \]
where
\[ R = \left[\begin{matrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1n-1} & r_{1n} \\ 0 & r_{22} & r_{23} & \cdots & r_{2n-1} & r_{2n}\\ 0 & 0 & r_{33} & \cdots & r_{3n-1} & r_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & r_{nn} \end{matrix}\right] \]
Let \(A = \left[\begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{matrix}\right]\). Find the \(QR\) factorization, or explain why it does not have one.