Math 303: Section 31
\[ \def\R{{\mathbb R}} \def\P{{\mathbb P}} \def\B{{\mathcal B}} \def\C{{\mathcal C}} \def\S{{\mathcal S}} \def\b{{\mathbf{b}}} \def\a{{\mathbf{a}}} \def\c{{\mathbf{c}}} \def\x{{\mathbf{x}}} \def\y{{\mathbf{y}}} \def\u{{\mathbf{u}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \def\z{{\mathbf{z}}} \def\e{{\mathbf{e}}} \def\r{{\mathbf{r}}} \def\M{{\mathcal{M}}} \DeclareMathOperator{\null}{Nul} \DeclareMathOperator{\span}{Span} \DeclareMathOperator{\dim}{dim} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\row}{Row} \DeclareMathOperator{\col}{Col} \DeclareMathOperator{\trace}{trace} \newcommand{\set}[1]{\left\{ {#1} \right\}} \newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}} \newcommand{\norm}[1]{{\left|\! \left| #1 \right| \! \right|}} \newcommand{\ip}[1]{{\left\langle #1 \right\rangle}} \newcommand{\tr}[1]{{{#1}^\textsf{T}}} \]
An \(n\times n\) matrix \(A\) is orthogonally diagonalizable if there is an orthogonal matrix \(P\) such that \(\tr{P} A P\) is a diagonal matrix.
Observation. If \(A\) is orthogonally diagonalizable, \(A = \tr{A}\).
Let \(A\) be a symmetric \(n\times n\) matrix and let \(\x,\y \in \R^n\).
Theorem 1 Let \(A\) be an \(n\times n\) symmetric matrix with real entries. Then the eigenvalues of \(A\) are real.
Let \(A\) be a real symmetric matrix with eigenvalues \(\lambda_1\) and \(\lambda_2\) and corresponding eigenvectors \(\v_1\) and \(\v_2\), respectively.
Theorem 2 If \(A\) is a real symmetric matrix, then eigenvectors corresponding to distinct eigenvalues are orthogonal.
Let \(A\) be a real symmetric matrix. Then \(A\) is orthogonally diagonalizable.
Definition 1 The set of eigenvalues of a matrix A is called the spectrum of A.
Theorem 3 (The Spectral Theorem for Real Symmetric Matrices) Let \(A\) be an \(n\times n\) symmetric matrix with real entries. Then:
Let \(A = \left[\begin{matrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{matrix}\right]\). The eigenvalues of \(A\) are 2 and 8, with eigenspaces of dimensions 2 and 1, respectively.
Let \(A\) be an \(n\times n\) symmetric matrix with real entries, and let \(\set{\u_1, \ldots, \u_n}\) be an orthonormal basis of eigenvectors of \(A\) with \(A\u_i = \lambda_i \u_i\) for each \(i\). Further, let \(P_i = \u_i \tr{\u_i}\). Then:
Let \(A = \left[\begin{matrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{matrix}\right]\). The eigenvalues of \(A\) are \(\lambda_1 = \lambda_2 = 2\) and \(\lambda_3 = 8\), with eigenspaces of dimensions 2 and 1, respectively.
A basis for \(E_8\) is given by \(\set{\tr{[ 1 \ 1 \ 1]}}\) and a basis for \(E_2\) is \(\set{\tr{[1 \ -1 \ 0]}, \tr{[1 \ 0 \ -1]}}\).