Math 303: Section 32

Dr. Janssen

\[ \def\R{{\mathbb R}} \def\P{{\mathbb P}} \def\B{{\mathcal B}} \def\C{{\mathcal C}} \def\S{{\mathcal S}} \def\b{{\mathbf{b}}} \def\a{{\mathbf{a}}} \def\c{{\mathbf{c}}} \def\x{{\mathbf{x}}} \def\y{{\mathbf{y}}} \def\u{{\mathbf{u}}} \def\v{{\mathbf{v}}} \def\w{{\mathbf{w}}} \def\z{{\mathbf{z}}} \def\e{{\mathbf{e}}} \def\r{{\mathbf{r}}} \def\M{{\mathcal{M}}} \DeclareMathOperator{\null}{Nul} \DeclareMathOperator{\span}{Span} \DeclareMathOperator{\dim}{dim} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\row}{Row} \DeclareMathOperator{\col}{Col} \DeclareMathOperator{\trace}{trace} \newcommand{\set}[1]{\left\{ {#1} \right\}} \newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}} \newcommand{\norm}[1]{{\left|\! \left| #1 \right| \! \right|}} \newcommand{\ip}[1]{{\left\langle #1 \right\rangle}} \newcommand{\tr}[1]{{{#1}^\textsf{T}}} \]

**Definition 1** Let \(A\) be an \(n\times n\) symmetric matrix. A **quadratic form** on \(\R^n\) is a function \(Q\) defined by

\[ Q(\x) = \tr{\x} A \x. \]

For a given quadratic form, the matrix \(A\) is unique, so will be referred to as *the* matrix of the quadratic form.

Given an equation of the form \(Q(\x) = d\), where \(Q\) is a quadratic form on \(\R^2\) and \(d\) is a constant, how can we eliminate the cross terms?

That is, given a quadratic form \(Q\) in variables \(x_1, x_2, \ldots, x_n\), we want to find variables \(y_1, y_2, \ldots, y_n\) in terms of the \(x\)’s so that when written in terms of \(y_1, y_2, \ldots, y_n\), \(Q\) contains no cross terms, i.e.:

\[ Q(\x) = \tr{y} D \y, \]

where \(D\) is diagonal.

**Theorem 1 (Principal Axis Theorem)** Let \(A\) be an \(n\times n\) symmetric matrix. There is an orthogonal change of variables \(\x = P \y\) so that the quadratic form \(Q\) defined by \(Q(\x) = \tr{\x} A \x\) is transformed into the quadratic form \(\tr{\y} D \y\), where \(D\) is a diagonal matrix.

Let \(Q\) be the quadratic form defined by \(Q(\x) = 2x^2 + 4xy + 5y^2 = \tr{\x} A\x\), where \(\x = \left[\begin{matrix} x \\ y \end{matrix}\right]\) and \(A = \left[\begin{matrix} 2 & 2 \\ 2 & 5 \end{matrix}\right]\).

- The eigenvalues of \(A\) are \(\lambda_1 = 6\) and \(\lambda_2 = 1\) with corresponding eigenvectors \(\v_1 = \tr{[1 \ 2]}\) and \(\v_2 = \tr{[-2 \ 1]}\), respectively. Find an orthogonal matrix \(P\) with determinant 1 that diagonalizes \(A\). Is \(P\) unique? Is there a matrix without determinant 1 that orthogonally diagonalizes \(A\)? Explain.
- Use the matrix \(P\) to write the quadratic form without the cross-product.

A symmetric matrix \(A\) (and its associated quadratic form \(Q\)) is

**positive definite**if \(\tr{\x} A \x > 0\) for all \(\x\ne \mathbf{0}\),**positive semidefinite**if \(\tr{\x} A \x \ge 0\) for all \(\x\),**negative definite**if \(\tr{\x} A \x < 0\) for all \(\x\ne \mathbf{0}\),**negative semidefinite**if \(\tr{\x} A \x \le 0\) for all \(\x\), and**indefinite**if \(\tr{\x} A \x\) takes on both positive and negative values.

A quadratic form \(Q(\x) = \tr{\x} A \x\) is

- positive definite if \(A\) has all positive eigenvalues,
- negative definite if \(A\) has all negative eigenvalues,
- positive semidefinite if \(A\) has all nonnegative eigenvalues,
- negative semidefinite if \(A\) has all nonpositive eigenvalues, and
- indefinite if it has some of both.

Let \(A\) be a symmetric \(n\times n\) matrix, and define \(\ip{,} : \R^n\times \R^n \to \R\) by

\[ \ip{\u,\v} = \tr{\u} A\v. \]

- Explain why it is necessary for \(A\) to be positive definite in order for this to define an inner product on \(\R^n\).
- Show that in this case, the function does define an inner product.
- Let \(\ip{,} : \R^2 \times \R^2 \to \R\) be defined by

\[ \ip{\left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right], \left[\begin{matrix} y_1 \\ y_2 \end{matrix}\right]} = 2 x_1 y_1 - x_1 y_2 - x_2 y_1 + x_2 y_2. \]

Find a matrix \(A\) so that \(\ip{\x,\y} = \tr{\x} A \y\) and explain why \(\ip{,}\) defines an inner product.