Structural Properties of EDMs

Stat 203 Lecture 20

Dr. Janssen

Generating Functions in General

Moment Generating Function (MGF)

The moment generating function, denoted \(M(t)\), for some variable \(y\) with probability function \(\mathcal{P}(y)\) is

\[ M(t) = E[e^{ty}] = \begin{cases} \displaystyle\int_S \mathcal{P}(y) e^{ty} dy & \text{ for $y$ continuous}\\ \sum_{y\in S} \mathcal{P}(y) e^{ty} & \text{ for $y$ discrete},\end{cases} \]

for all values of \(t\) for which the expectation exists.

Cumulant Generating Function (CGF)

The cumulant generating function is defined to be

\[ K(t) = \log M(t) = \log E [e^{ty}], \]

for all values of \(t\) for which the expectation exists.

The Cumulants

In general:

\[ \kappa_r = \frac{d^r K(t)}{dt^r}\biggr\vert_{t=0} \]

Exercises:

\[ E[y] = \kappa_1 = \frac{dK(t)}{dt}\biggr\vert_{t=0} \qquad \text{ and } \qquad \text{var}[y] = \kappa_2 = \frac{d^2 K(t)}{dt^2}\biggr\vert_{t=0}. \]

Generating Functions for EDMs

MGF for EDM

Theorem 1 The MGF and CGF for an EDM are

\[ \begin{align*} M(t) &= \exp \left(\frac{\kappa(\theta + t\phi) - \kappa(\theta)}{\phi}\right); \\ K(t) &= \frac{\kappa(\theta + t\phi) - \kappa(\theta)}{\phi}. \end{align*} \qquad(1)\]

Using Equation 1, the \(r\)th cumulant for an EDM is

\[ \kappa_r = \phi^{r-1} \frac{d^r \kappa(\theta)}{d \theta^r}. \]

Examples: Normal and Poisson

Example 1 The CGF for the normal distribution is

\[ K(t) = \frac{(\mu + t\sigma^2)^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} = \mu t + \frac{\sigma^2 t^2}{2}. \]

Example 2 For the Poisson distribution, we obtain

\[ K(t) = \mu(\exp t - 1). \]

Mean and Variance of an EDM

Mean and Variance

Note:

\[ E[y] = \mu = \frac{d\kappa(\theta)}{d\theta} \qquad \text{ and } \qquad \text{var}[y] = \phi \frac{d^2\kappa(\theta)}{d\theta^2}. \]

Observe:

\[ \frac{d^2\kappa(\theta)}{d\theta^2} = \frac{d}{d\theta} \left(\frac{d\kappa(\theta)}{d\theta}\right) = \frac{d\mu}{d\theta}. \]

Example: Normal distribution

For the normal distribution, \(\kappa(\theta) = \theta^2/2\), so \(E[y] = d\kappa/d\theta = \theta = \mu\).

For the variance, we see \(V(\mu) = d^2\kappa /d\theta^2 = 1\), and since \(\phi = \sigma^2\), \(\text{var}[y] = \phi V(\mu) = \sigma^2\).

Example: Poisson

We have \(\kappa(\theta) = \mu\) and \(\theta = \log\mu\). The mean is thus

\[ E[y] = \frac{d\kappa}{d\theta} = \frac{d\kappa}{d\mu} \frac{d\mu}{d\theta} = \mu. \]

For the variance, \(V(\mu) = d\mu/d\theta = \mu\). Since \(\phi = 1\) for the Poisson distribution, \(\text{var}[y] = \mu\).

Variance Function

Example

Consider an EDM with \(V(\mu) = \mu^2\).

Then

\[ \mathcal{P}(y) = a(y,\phi) \exp \left( \frac{y(-1/\mu) - \log\mu}{\phi} \right), \]

for an appropriate function \(a(y, \phi)\).

Recognize this?