
Diagnostics and Model-Building
Stat 203 Lecture 9

Dr. Janssen

Assumptions for linear regression

Typical assumptions

Recall that the typical assumptions for a linear regression model are:

• Lack of outliers (the same model is appropriate for all observations).
• Linearity: the linear predictor captures the true relationship between 𝜇𝑖 and the explana-

tory variables.
• Constant variance: The responses 𝑦𝑖 have constant variance, apart from known weights

𝑤𝑖.
• Independence: the responses 𝑦𝑖 are statistically independent of each other.
• Distribution: The responses 𝑦𝑖 are normally distributed around 𝜇𝑖.

The process of examining and identifying possible violations of model assumptions is called
diagnostic analysis.

In what follows, we assume that the important explanatory variables are available for our linear
predictor. We’ll also explore ways of improving linearity by changing the scale of the covariate
or response, or by building new covariates from existing ones (e.g., in an interaction).

Exploring the assumptions

We mention a few of the assumptions here; a fuller treatment is available on pp. 94–97.

1



Independence

Question

One of the goals of experimental design/data collection is that the responses 𝑦𝑖 are statis-
tically independent. However, dependence can arise because responses share a common
source or because data are collected in a hierarchical manner. Can you think of some
examples of how this can happen?

Normality

The assumption of normality justifies the use of 𝐹 - and 𝑡-tests. When the number of obser-
vations is large and there are no serious outliers, the tests tend to behave well even when the
residuals are not normally distributed.

Residuals for Normal Linear Regression Models

Recall that the raw residuals are

𝑟𝑖 = 𝑦𝑖 − ̂𝜇𝑖,

and that RSS = ∑ 𝑤𝑖𝑟2
𝑖 .

It turns out that the variance of 𝑟𝑖 is given by

var[𝑟𝑖] = 𝜎2(1 − ℎ𝑖)/𝑤𝑖, (1)

where ℎ𝑖 is the leverage which 𝑦𝑖 has in estimating its own fitted value ̂𝜇𝑖 (more on this in a
minute).

A consequence of Equation 1 is that the residuals do not have constant variance. A modified
residual that does have constant variances is defined by

𝑟∗
𝑖 =

√𝑤𝑖(𝑦𝑖 − ̂𝜇𝑖)
√1 − ℎ𝑖

, (2)

with var[𝑟∗
𝑖 ] = 𝜎2. After estimating 𝜎2 with 𝑠2, we define the standardized residuals by
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𝑟′
𝑖 = 𝑟∗

𝑖
𝑠 =

√𝑤𝑖(𝑦𝑖 − ̂𝜇𝑖)
𝑠√1 − ℎ𝑖

. (3)

The standardized residuals defined in Equation 3:

• estimate the standardized distance between the data 𝑦𝑖 about the fitted values ̂𝜇𝑖.
• are approximately standard normal in distribution (more precisely: 𝑟′

𝑖 follows a
𝑡-distribution on 𝑛 − 𝑝′ df)

Given a linear model model, we can calculate the residuals in R using resid(model) and the
standardized residuals by rstandard(fit).

Exploration

Calculate some residuals for one of the models we’ve explored.

Example 0.1. Here’s some residuals for the lungcap dataset.

library(GLMsData); data(lungcap);
lungcap$Smoke <- factor(lungcap$Smoke,

levels=c(0, 1),
labels=c("Non-smoker","Smoker"))

LC.lm <- lm( FEV ~ Ht + Gender + Smoke, data=lungcap)

resid.raw <- resid( LC.lm ) # The raw residuals
resid.std <- rstandard( LC.lm ) # The standardized residuals
c( Raw=var(resid.raw), Standardized=var(resid.std) )

Raw Standardized
0.1812849 1.0027232

Leverages

Our next goal is to explore the notion of leverage, which, roughly, is the measure of the location
of an observation relative to the average location of an observation. This enables us to detect
unusual combinations of the explanatory variables, as well as influential observations.

Put another way, it’s the distance between the observation and its fitted value.

To define the leverages, we first need to standardize the responses so they have constant
variance. Write the standardized responses as 𝑧𝑖 = √𝑤𝑖𝑦𝑖. Then 𝐸[𝑧𝑖] = 𝜈𝑖 = √𝑤𝑖𝜇𝑖 and
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var[𝑧𝑖] = 𝜎2. Then the fitted values ̂𝜈𝑖 = √𝑤𝑖 ̂𝜇𝑖 can be considered to be a linear function of
the responses 𝑧𝑖. The hat-values are defined as the values ℎ𝑖𝑗 that relate the responses 𝑧𝑖 to
the fitted values 𝜈𝑖, satisfying

̂𝜈𝑖 =
𝑛

∑
𝑗=1

ℎ𝑖𝑗𝑧𝑗

The hat-value ℎ𝑖𝑗 is the coefficient applied to the standardized observation 𝑧𝑗 to obtain the
standardized fitted value ̂𝜈𝑖. When 𝑤𝑖 = 1 for all 𝑖,

̂𝜈𝑖 = ̂𝜇𝑖 = ℎ𝑖1𝑦1 + ℎ𝑖2𝑦2 + ⋯ + ℎ𝑖𝑛𝑦𝑛 =
𝑛

∑
𝑗=1

ℎ𝑖𝑗𝑦𝑗.

The leverages are the diagonal hat-values ℎ𝑖𝑖 =∶ ℎ𝑖. These measure the weight that response
𝑦𝑖 (or 𝑧𝑖) receives in computing its own fitted value: ℎ𝑖 = ∑𝑛

𝑗=1 ℎ2
𝑖𝑗. The leverages ℎ𝑖 depend

on the values of the explanatory variable and weights, not on the values of the responses. The
𝑛 leverages satisfy 1/𝑛 ≤ ℎ𝑖 ≤ 1 and have sum equal to 𝑝′.

In the case of simple linear regression without weights,

ℎ𝑖 = 1
𝑛 + (𝑥𝑖 − 𝑥)2

SS𝑥
.

In general, a small leverage for Observation 𝑖 indicates that many observations are contributing
to the estimation of the fitted value.

Example 0.1. We can calculate leverages in R using hatvalues():

h <- hatvalues( LC.lm ) # Produce the leverages
sort(h,decreasing=TRUE) [1:2] # The largest two leverages

629 631
0.02207842 0.02034224
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Why hat-values?

Let’s consider the matrix formulation for (unweighted) regression. You may recall that

̂� = (𝑋𝑇 𝑋)−1𝑋𝑇 y,

where 𝑋 is known as the model matrix, and contains columns which are 𝑛×1 vectors of values
for 𝑥𝑗.

The fitted values are given by ̂� = 𝑋� = 𝐻y, where

𝐻 = 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 .

We call 𝐻 the hat matrix because it puts the “hat’ ’ on y. The leverages are the diagonal
elements of 𝐻.
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