EGYPTIAN MATHEMATICS

Dr. Mike Janssen
Lecture 2

OVERVIEW

1. Historical Context
2. Number Systems and Computation
3. Linear Equations and Proportional Reasoning
4. Geometry

Historical Context

TWO SYSTEMS OF WRITING

- Hieroglyphic
- Hieratic

Mathematics was primarily for scribes.

PAPYRI

- Dry climate
- Papyri preserved: Rhind, Moscow

Number Systems and Arithmetic

HIEROGLYPHIC NUMBERS

- 1: 1
- 10: \cap
- 100: ९
- 1000: ${ }^{\text {a }}$
- 10,000: $ل$
- 100,000:
- 1,000,000:

The notation is additive. What is:

Note that the usual practice was to put smaller digits on the left.

ADDITION

Problem: Add

	III $\cap \cap \cap \cap$ $\cap \cap \cap \cap$ and ৎеৎৎ ৎৎৎ	IIII $\cap \cap \cap \cap$ $\cap \cap \cap$ ৎৎ
IIII	Or:	
IIII		
$\bigcirc \cap \cap \cap \cap$		
$\cap \cap \cap \cap \cap$		
๑กกดก		
¢е¢е¢		
¢е¢¢		

MULTIPLICATION

Problem: Suppose we wish to multiply 11 by 14.

111
222
444
888
Totals 14154

Explain what is going on. Check your idea by trying 17×12.

PROBLEM 3, RHIND PAPYRUS

Question: How can we divide six loaves among ten men? Answer: each man gets one-half plus one-tenth of a loaf.

Book notation: $\bar{n}=1 / n, \overline{\overline{3}}=2 / 3$.

MULTIPLYING FRACTIONS

Checking the answer from before:

1	$\overline{2} \overline{10}$
2	$1 \overline{5}$
4	$2 \overline{3} \overline{15}$
8	$4 \overline{\overline{3}} \overline{10} \overline{30}$
10	6

Linear Equations

MOSCOW PAPYRUS PROBLEM 19

Problem: Find the number such that if it is taken $11 / 2$ times and then 4 is added, the result is 10 .

Solution: "Calculate the excess of this 10 over 4. The result is 6 . You operate on $11 / 2$ to find 1 . The result is $2 / 3$. You take $2 / 3$ of this 6 . The result is 4 . Behold, 4 says it. You will find that this is correct."

FALSE POSITION

Example (Rhind Papyrus, Problem 26)
Find a quantity that when added to $1 / 4$ of itself, the result is 15 .
Solution: "Assume [the answer is] 4. Then $1 \overline{4}$ of 4 is $5 \ldots$. Multiply 5 so as to get 15.
The answer is 3 . Multiply 3 by 4 . The answer is 12. ."
Explain.
Idea: assume a convenient (but probably wrong) solution to a linear equation and adjust it via proportionality. Used in several other examples, as well as the only extant Egyptian quadratic.

A NOTE ON GEOMETRY

- Approximated $\pi \approx 256 / 81=3.16049 \ldots$
- Area of the circle $A=[(8 / 9) d]^{2}$
- No extant sources with volume of a pyramid, though several Rhind problems deal with slope (seked)
- Moscow Papyrus: formula for volume of a truncated pyramid

