EGYPTIAN MATHEMATICS

Dr. Mike Janssen

Lecture 2

- 1. Historical Context
- 2. Number Systems and Computation
- 3. Linear Equations and Proportional Reasoning
- 4. Geometry

Historical Context

- Hieroglyphic
- Hieratic

Mathematics was primarily for scribes.

- Dry climate
- Papyri preserved: Rhind, Moscow

Number Systems and Arithmetic

HIEROGLYPHIC NUMBERS

• 1: I

10: ∩
100: ⁶
1000: ¹
10,000: ¹
100,000: ²
1,000,000: ²

The notation is additive. What is:

Note that the usual practice was to put smaller digits on the left.

ADDITION

Problem: Add

	III ∩∩∩∩ ∩∩∩∩ and ९९९ १९९	۱۱۱۱۱ ۱۱۱۱۱ ۱۱۱۱ ۱۱۱۱ ۱۱۱۱ ۱۱۱۱ ۱۱۱۱	
1111	Or:		
$\cap \cap \cap \cap \cap$			
$\cap \cap \cap \cap \cap$		000	
00000 99999		00	
? ???		Ĭ	

Problem: Suppose we wish to multiply 11 by 14.

	1	11
	2	22
	4	44
	8	88
Totals	14	154

Explain what is going on. Check your idea by trying 17×12 .

Question: How can we divide six loaves among ten men? *Answer*: each man gets one-half plus one-tenth of a loaf.

 $\bigcup_{i=1}^{n} \cup_{i=1}^{n}$

Book notation: $\overline{n} = 1/n$, $\overline{\overline{3}} = 2/3$.

Checking the answer from before:

1	2 10
2	15
4	2 3 15
8	4 3 10 30
10	6

Linear Equations

Problem: Find the number such that if it is taken 1 1/2 times and then 4 is added, the result is 10.

Solution: "Calculate the excess of this 10 over 4. The result is 6. You operate on 1 1/2 to find 1. The result is 2/3. You take 2/3 of this 6. The result is 4. Behold, 4 says it. You will find that this is correct."

Example (Rhind Papyrus, Problem 26)

Find a quantity that when added to 1/4 of itself, the result is 15.

Solution: "Assume [the answer is] 4. Then $1\overline{4}$ of 4 is 5... Multiply 5 so as to get 15. The answer is 3. Multiply 3 by 4. The answer is 12."

Explain.

Idea: assume a convenient (but probably wrong) solution to a linear equation and adjust it via proportionality. Used in several other examples, as well as the only extant Egyptian quadratic.

- Approximated $\pi \approx 256/81 = 3.16049...$
- Area of the circle $A = [(8/9)d]^2$
- No extant sources with volume of a pyramid, though several Rhind problems deal with slope (*seked*)
- Moscow Papyrus: formula for volume of a truncated pyramid